3,599 research outputs found

    Analytical Expression for the RKKY Interaction in Doped Graphene

    Full text link
    We obtain an analytical expression for the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction JJ in electron or hole doped graphene for linear Dirac bands. The results agree very well with the numerical calculations for the full tight-binding band structure in the regime where the linear band structure is valid. The analytical result, expressed in terms of the Meijer G-function, consists of a product of two oscillatory terms, one coming from the interference between the two Dirac cones and the second coming from the finite size of the Fermi surface. For large distances, the Meijer G-function behaves as a sinusoidal term, leading to the result JR2kFsin(2kFR)1+cos[(KK).R]J \sim R^{-2} k_F \sin (2 k_F R) {1 + \cos[(K-K').R]} for moments located on the same sublattice. The R2R^{-2} dependence, which is the same for the standard two-dimensional electron gas, is universal irrespective of the sublattice location and the distance direction of the two moments except when kF=0k_F =0 (undoped case), where it reverts to the R3R^{-3} dependence. These results correct several inconsistencies found in the literature.Comment: 5 pages, 5 figure

    Superstatistical random-matrix-theory approach to transition intensities in mixed systems

    Full text link
    We study the fluctuation properties of transition intensities applying a recently proposed generalization of the random matrix theory, which is based on Beck and Cohen's superstatistics. We obtain an analytic expression for the distribution of the reduced transition probabilities that applies to systems undergoing a transition out of chaos. The obtained distribution fits the results of a previous nuclear shell model calculations for some electromagnetic transitions that deviate from the Porter-Thomas distribution. It agrees with the experimental reduced transition probabilities for the 26A nucleus better than the commonly used chi-squared distribution.Comment: 14 pages, 3 figure

    Magnetic Ground State of Pr0.89_{0.89}LaCe0.11_{0.11}CuO4+αδ_{4+\alpha-\delta} with Varied Oxygen Depletion Probed by Muon Spin Relaxation

    Full text link
    The magnetic ground state of an electron-doped cuprate superconductor Pr1x_{1-x}LaCex_xCuO4+αδ_{4+\alpha-\delta} (x=0.11,α0.04x=0.11, \alpha\simeq0.04) has been studied by means of muon spin rotation/relaxation (\msr) over a wide variety of oxygen depletion, 0.03δ0.120.03\le\delta\le0.12. Appearance of weak random magnetism over entire crystal volume has been revealed by a slow exponential relaxation. The absence of δ\delta-dependence for the random magnetism and the multiplet pattern of muon Knight shift at higher fields strongly suggest that the random moments are associated with excited Pr3+^{3+} ions under crystal electric field.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Recent Progress in Heavy Quark Physics

    Get PDF
    Some of the recent progress in heavy quark physics is reviewed. Special attention is paid to inclusive methods for determining Vub and factorization in nonleptonic B decays. Theoretical predictions for top-antitop production near threshold are also discussed.Comment: talk given at 2001 Lepton Photon Meeting, 10 pages, 5 figure

    Random matrix theory within superstatistics

    Full text link
    We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the nearest-neighbor-spacing distributions and the two-level correlation functions for system in transition from order to chaos. The calculated spacing distribution fits the resonance statistics of random binary networks obtained in a recent numerical experiment.Comment: 20 pages, 6 figure

    Liquid-Phase Chemical Sensing Using Lateral Mode Resonant Cantilevers

    Get PDF
    Liquid-phase operation of resonant cantilevers vibrating in an out-of-plane flexural mode has to date been limited by the considerable fluid damping and the resulting low quality factors (Q factors). To reduce fluid damping in liquids and to improve the detection limit for liquid-phase sensing applications, resonant cantilever transducers vibrating in their in-plane rather than their out-of-plane flexural resonant mode have been fabricated and shown to have Q factors up to 67 in water (up to 4300 in air). In the present work, resonant cantilevers, thermally excited in an in-plane flexural mode, are investigated and applied as sensors for volatile organic compounds in water. The cantilevers are fabricated using a complementary metal oxide semiconductor (CMOS) compatible fabrication process based on bulk micromachining. The devices were coated with chemically sensitive polymers allowing for analyte sorption into the polymer. Poly(isobutylene) (PIB) and poly(ethylene-co-propylene) (EPCO) were investigated as sensitive layers with seven different analytes screened with PIB and 12 analytes tested with EPCO. Analyte concentrations in the range of 1−100 ppm have been measured in the present experiments, and detection limits in the parts per billion concentration range have been estimated for the polymer-coated cantilevers exposed to volatile organics in water. These results demonstrate significantly improved sensing properties in liquids and indicate the potential of cantilever-type mass-sensitive chemical sensors operating in their in-plane rather than out-of-plane flexural modes

    Tunnelling spectroscopy of the interface between Sr2RuO4 and a single Ru micro-inclusion in eutectic crystals

    Full text link
    The understanding of the zero bias conductance peak (ZBCP) in the tunnelling spectra of S/N junctions involving d-wave cuprate superconductors has been important in the determination of the phase structure of the superconducting order parameter. In this context, the involvement of a p-wave superconductor such as Sr2RuO4 in tunnelling studies is indeed of great importance. We have recently succeeded in fabricating devices that enable S/N junctions forming at interfaces between Sr2RuO4 and Ru micro-inclusions in eutectic crystals to be investigated.3 We have observed a ZBCP and have interpreted it as due to the Andreev bound state, commonly seen in unconventional superconductors. Also we have proposed that the onset of the ZBCP may be used to delineate the phase boundary for the onset of a time reversal symmetry broken (TRSB) state within the superconducting state, which does not always coincide with the onset of the superconducting state. However, these measurements always involved two interfaces between Sr2RuO4 and Ru. In the present study, we have extended the previous measurements to obtain a deeper insight into the properties of a single interface between Sr2RuO4 and Ru.Comment: To appear in J. Phys. Soc. Jpn. Vol. 75 No.12 issu
    corecore